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Abstract

Classical buckling theory is mostly used to investigate the in-plane stability of arches, which assumes that the pre-
buckling behaviour is linear and that the effects of pre-buckling deformations on buckling can be ignored. However, the
behaviour of shallow arches becomes non-linear and the deformations are substantial prior to buckling, so that their
effects on the buckling of shallow arches need to be considered. Classical buckling theory which does not consider these
effects cannot correctly predict the in-plane buckling load of shallow arches. This paper investigates the in-plane
buckling of circular arches with an arbitrary cross-section and subjected to a radial load uniformly distributed around
the arch axis. An energy method is used to establish both non-linear equilibrium equations and buckling equilibrium
equations for shallow arches. Analytical solutions for the in-plane buckling loads of shallow arches subjected to this
loading regime are obtained. Approximations to the symmetric buckling of shallow arches and formulae for the in-
plane anti-symmetric bifurcation buckling load of non-shallow arches are proposed, and criteria that define shallow and
non-shallow arches are also stated. Comparisons with finite element results demonstrate that the solutions and indeed
approximations are accurate, and that classical buckling theory can correctly predict the in-plane anti-symmetric bi-
furcation buckling load of non-shallow arches, but overestimates the in-plane anti-symmetric bifurcation buckling load
of shallow arches significantly. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When the lateral displacements and twist rotations of an arch are fully restrained, the arch (Fig. 1) may
buckle in an in-plane anti-symmetric bifurcation mode (Fig. 2(a)) or in an in-plane symmetric snap-through
mode (Fig. 2(b)) under in-plane loading (Fig. 1(b)). In order to prevent an arch from in-plane failure, it is
important to be able to predict accurately its in-plane elastic buckling load that is needed in the design
(Guide to stability design criteria for metal structures, 1988; AS4100, 1998; BS5950, 1998; Load and re-
sistance factor design specification, 1993; Pi and Trahair, 1999). This paper addresses the issue of in-plane
elastic stability in shallow and non-shallow arches.
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Nomenclature
A area of cross-section

Ay, Ay, A3, A4 coeflicients

B

width of cross-section or flange width of I-section

By, B>, B3, B4 coeflicients
C, Ci, C,, C3, C4 coefficients

D
Ds, Dy

s, )y
t

ty
tw
U*
V*
v

overall height of cross-section

coefficients

Young’s modulus of elasticity

rise of arch

second moment of area of cross-section about the major principal axis
coefficient

= ¢gR, nominal axial compression

actual axial compression

classical anti-symmetric buckling load of fixed arches
classical anti-symmetric buckling load of fixed arches
classical anti-symmetric buckling load of fixed columns
classical anti-symmetric buckling load of pin-ended arches
classical anti-symmetric buckling load of pin-ended arches
= g R, nominal anti-symmetric buckling load

= ¢gR, nominal symmetric buckling load

= (gR — N)/N, dimensionless measure of the difference between the actual and nominal axial

compressions

axial stress resultant during buckling
anti-symmetric bifurcation buckling load
symmetric snap-through buckling load
initial radius of arches

= +/I./A, gyration radius of cross-section about the major principal axis
developed length of arch

coordinates around the arch centre line and toward the arch centre
wall-thickness of cross-section

wall-thickness of flange of I-section

wall-thickness of web of I-section

dimensionless total strain energy

dimensionless total potential

radial displacement

? = v/R dimensionless radial displacement

Uc

central radial displacement

b, = v./R dimensionless central radial displacement

U
W*
W

dimensionless radial buckling displacement
dimensionless potential energy of loading
axial displacement

w = w/R dimensionless axial displacement

Wy
€b

61’1'1

axial buckling displacement
bending strain
membrane strain
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buckling membrane strain

strain at a point P

modified slenderness for in-plane buckling of an arch
= /NR?JEI,

half of the included angle of an arch

angular coordinate

o()

b

) variation of the variable ( )
! d( )/do

d*( )/de?

S MM
AA/%AQ@“{; >0 8
~— ~— o

cross-section

(a) Geometry and cross-section (b) Radial load uniformly
distributed around arch

Fig. 1. Arches and loading.

N Nt < N

(a) Anti-symmetric bifurcation buckling (b) Symmetric snap-through buckling

Fig. 2. Buckling modes.

So-called classical buckling theory is often used to determine the elastic buckling load of arches (Tim-
oshenko and Gere, 1961; Vlasov, 1961; Simitses, 1976). To facilitate the buckling analysis, some sim-
plifications need to be made in this classical buckling theory (Trahair and Bradford, 1998). Firstly, the
pre-buckling behaviour is assumed to be linear so that the stress resultants can be linearised. Secondly, the
effects of the pre-buckling displacements on buckling are ignored, while thirdly, the effects of the buckling
deformations on the displacement and geometrical stiffnesses are ignored. However, these simplifications
may not be valid for shallow arches because the behaviour of shallow arches becomes non-linear and
deformations are significant prior to buckling, as pointed out by Pi and Trahair (1998), and so their effects
on the in-plane buckling of shallow arches need to be accounted for accurately. These effects may reduce the
in-plane buckling resistance of shallow arches significantly, and so classical buckling theory may overes-
timate the in-plane elastic buckling load of shallow arches.
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Early studies on the in-plane buckling of arches are summarised in the Guide to stability design criteria
for metal structures (1976, 1988) and the Handbook of structural stability (1971). The buckling of sinu-
soidal shallow arches was studied by Timoshenko and Gere (1961) and Simitses (1976). Gjelsvik and
Bodner (1962) used an energy method to investigate the instability of fixed shallow circular arches with
rectangular solid cross-section subjected to central point loading, and approximate solutions were obtained.
Schreyer and Masur (1966) performed an exact analysis for shallow circular arches and derived analytical
solutions, but their analysis was limited to fixed arches with a rectangular solid section and their solutions
for the symmetric buckling mode were very complicated. Dickie and Broughton (1971) used a series method
to study the buckling of shallow circular pin-ended and fixed arches. However, their study was also con-
fined again to rectangular solid cross-sections and only approximate numerical solutions were given. In
addition to a rectangular section, other shapes such as I-sections and rectangular hollow sections are widely
used for arches, as are a number of materials. Although research on the numerical analysis of the buckling
of arches has been extensive in recent years (Noor and Peters, 1981; Stolarski and Belytschko, 1982;
Calhoun and DaDeppo, 1983; Elias and Chen, 1988; Wen and Suhendro, 1991; Pi and Trahair, 1998), it is
not widely recognised that classical buckling theory may overestimate the in-plane buckling load of shallow
arches. Because of the lack of analytical solutions for in-plane buckling of shallow arches based on the non-
linear theory, analytical solutions based on classical buckling theory may mistakenly be used to verify the
effectiveness of finite element results for shallow arches. Using certain finite element codes to obtain the in-
plane buckling load of shallow arches is also questionable. Because linear buckling (eigenvalue) analysis is
used to obtain the buckling load of a structure in many finite element codes, this method may be erro-
neously used to obtain the in-plane buckling load of a shallow arch. For example, classical buckling theory
has been used to predict the in-plane buckling of shallow arches by some researchers (Rajasekaran and
Padmanabhan, 1989; Kang and Yoo, 1994), and these results are at odds with the non-linear analysis
presented in the current paper.

The purposes of this paper are threefold: to investigate analytically the elastic in-plane stability of both
pin-ended and fixed circular arches with an arbitrary cross-section and subjected to a radial load uniformly
distributed around the arch axis; to use an energy method to obtain analytical solutions for the buckling
load of the shallow arches including the non-linear effect of pre-buckling deformations; and to propose
approximations to the symmetric buckling of the shallow arches and formulas for the in-plane buckling
load of both shallow and non-shallow arches.

2. Classical buckling analysis

When an arch is subjected to a radial load ¢ in the direction of the major principal axis of the cross-
section and uniformly distributed around the arch axis as shown in Fig. 1, the arch undergoes an uniform
axial compression action N = gR where R is the radius of the centroidal axis of the arch. Other conservative
distributed loading cases can also be modelled such as hydrostatic pressure (Simitses, 1976; Hodges, 1999)
that stays normal to the deformed arch. However, this paper concentrates on the uniformly distributed
radial loading case. Classical buckling theory can be used to determine its in-plane buckling load, and this
theory is reviewed in the following. In using classical buckling theory, some simplifications need to be made
as discussed in the introduction. By using those simplifications and assuming that the major principal axis is
directed toward the arch centre, the longitudinal normal strain of an arbitrary point P can be expressed as

€p = €m + € (1)

where the membrane strain e, is given by

em =W — b+ + W)’ (2)
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and the bending strain ¢, is given by (Simitses, 1976; Papangelis and Trahair, 1987)
e = —y({@" +Ww)/R 3)

where () =d( )/d6, ( )" =d*( )/d6? 6 is the angular coordinate, & = v/R, w = w/R, v and w are the
radial and axial displacements respectively, y is the coordinate of the point P in the principal axis system
oxy (Fig. 1).

If effects of the membrane strain on the curvature change are considered, the bending strain ¢, is then
given by (Vlasov, 1961; Pi and Trahair, 1999)

e = —y(7" +0)/R (4)

Setting the second variation of the total potential of an arch based on the strain of Egs. (2) and (3) to be
equal to zero leads to the energy equation for in-plane buckling of the arch as
1 [° . . . . . .
2 / JEAQH, - B)” + EL(8, + ) /R + Oy(&, + )’ ]Rd0 = 0 (5)
where E is Young’s modulus of elasticity, A4 is the area of the cross-section, I, is the second moment of the
area of the cross-section about its major principal axis, variation of displacements &( ) is written as
(), =9( ), and Q, is the axial stress resultant given by

O, = EA(W — ) = =N (6)

The differential equilibrium equations for in-plane buckling can be obtained from the energy equation
(5) by use of the calculus of variations, whence upon invoking the Euler-Lagrange equations,

[O(5, + )] + EA(W, — by) — [EL (% + ) /R = 0 (7)
for buckling equilibrium in the radial direction and
Os(T, + W) — [EA(W, — ] — [EL(T, + W) /R =0 (8)

for buckling equilibrium in the axial direction.
If the centre line of the arch is assumed to be inextensible during buckling so that

Wy, — U =0 9)
the lowest anti-symmetric buckling load of pin-ended arches can be obtained as (Pi and Bradford, 2000)
n2EI,
P = 2 (10)
(5/2)
while the lowest anti-symmetric buckling load of fixed arches can be obtained as
2
EI
N = () L (1)
(/2)

The value of the parameter k increases with the increase of the included angle 2@. When the included angle
20 = 180°, k = 1.5, and when 2@ = 0°, the arch becomes a column and the buckling load (11) becomes
that of the second mode of a fixed ended column given by

(1.43037)’EI,
(8/2)°

When the strains given in Egs. (2) and (4) are used, performing the same analysis leads to the lowest
buckling load for pin-ended arches as (Pi and Bradford, 2000)

(12)

FB ~



110 Y.-L. Pi et al. | International Journal of Solids and Structures 39 (2002) 105-125

2 _ M2
R "
while the lowest anti-symmetric buckling load of fixed arches can be obtained as

Ny — Gkm)* = O7JEL, (14)
(5/2)°

The value of k increases with the increase of the included angle 2@ of the arch. When the included angle
20 = 180°, k = 1.5, and when 20 = 0°, the arch becomes a column and & ~ 1.4303.

3. Nonlinear in-plane equilibrium
3.1. Differential equilibrium equations

Because classical buckling theory does not account for the significant effects of pre-buckling deformation
and non-linearity on buckling, it cannot be used to predict the in-plane buckling of shallow arches. An
energy method is used in this section to investigate the in-plane buckling of shallow arches by accounting
for the effects of pre-buckling deformations and geometric non-linearity. The finite element results reported
by Pi and Trahair (1998) demonstrated that the axial displacements w of shallow arches are quite small
prior to buckling, so that their effects on the radial deformation may be ignored. Thus, the longitudinal
normal strain (1) of a point P can further be simplified as

€p = €m + € (15)
where the membrane strain €, of Eq. (2) and the bending strain €, of Egs. (3) or (4) are simplified as

1
emzw’—ﬁ+§(ﬁ’)2 and 6b=—& (16)

The total strain energy can be written in a dimensionless form after division by the factor EAR as

v - | "l

02

where r, = \/I,/4 is the radius of gyration of the cross-section about the major principal axis.
The dimensionless potential energy of the radial load ¢ is

2 (~m\2
2 ) ]d@ (17)

RZ

e ~
qUR
o i 1
w [ el (18)
The dimensionless total potential of a shallow arch can then be written as
) ~1\2 ~
. 1|, 7@ qoR
* * ko - X _ 1 1
VvV =U"+W /@{2 €, + R 7 do (19)

Equilibrium equations can be obtained by invoking Euler—Lagrange equations of variational calculus.
For equilibrium in the axial direction,

¢ =0 (20)

so that the membrane strain ¢, is a constant and can be written as
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N
- 21
€m A (21)
where N is the actual axial compression force in the arch as distinct from its nominal value gR.
For equilibrium in the radial direction,

v

v

P ﬁ” - q (22)
where u is a dimensionless parameter defined by
NR?
2 _ 23
K=l (23)
and g is a dimensionless load defined by
_ gR—-N
=—= 24
=" (24)

which is a measure of the difference between the nominal axial compression gR and the actual axial
compression N.

3.2. Non-linear equilibrium conditions for pin-ended arches

For pin-ended arches, the dimensionless radial displacements &, which satisfy the boundary conditions
v=10"=0at 0 = +0, can be obtained by solving Eq. (22) as
_q [cos(ud) —cos(u®@) 1 ) )
== =[(ub)” — (nO 25
= 4 f o) SO ) - o) 23)
The non-linear equilibrium conditions for shallow arches can be established by considering that the
constant membrane strain given by Eq. (21) should be equal to the average membrane strain over the arch
calculated from Eq. (16), so that

N 1 (.,

Using the boundary conditions w = 0 at § = +0, it is clear that

1 (%]
20 )6
and from Eq. (23), the left-hand side of Eq. (26) can be rewritten as
_N__NR1L_
EA EI. R* 4 R2

Wwdo =0 (27)

(28)

Considering Eq. (27) and substituting Egs. (25) and (28) into Eq. (26) leads to the non-linear equilibrium
condition for pin-ended shallow arches given by

Aqu +Big+ C) = 0 (29)
where
A = ! 5 5—5M+tan2(u@) +1 (30)
4(u0) 6



112 Y.-L. Pi et al. | International Journal of Solids and Structures 39 (2002) 105-125

1 t e 1
B, = 2 |: - an('u ):| + = (31)
(1O) He 3
2
¢ = (“@) (32)
As
in which /; is the modified slenderness for an arch defined by
. _RO*
t rx N 4’/th (33)

3.3. Non-linear equilibrium conditions for fixed arches

For fixed arches, the solution of Eq. (22), which satisfies the boundary conditions o = & = 0 at 0 = +0,
can be similarly obtained as

- q [ (uO)[cos(ub) —cos(u®)] 1. o o o
o= 4 f LOleost) ZeostOfuo)? - e (34)

Considering Eq. (27) and substituting Eqs. (28) and (34) into Eq. (26) leads to the non-linear equilibrium
condition for fixed arches given by

A +Byg+Cr=0 (35)
where
A4, = 1—52 + w [3(10) cot(u®) + (uO)* cot?(uO) — 4| (36)
1 1
By =3+ g (H0)cot(ud) ~ 1 (37)
G = (#)S@> (38)

4. Buckling analysis
4.1. Buckling equations
The critical condition for buckling may be stated that the second variation of the total potential is equal

to zero for any admissible variation of the displacements, which indicates a possible transition from a stable
state to an unstable state. Taking the second variation of the dimensionless total potential (19) leads to

1 ©1
,52[/*:/ _
2 o 2

where €., is the membrane strain during buckling given by

rv

(62 te 5’2) n ﬂz] do (39)
mb m¥h

RZ

€mb = Wy, — By + '8, (40)



Y.-L. Pi et al. | International Journal of Solids and Structures 39 (2002) 105-125 113

The functions w;, and @, which make the functional (1/2)8*V* stationary satisfy the Euler-Lagrange
equations of variational calculus, which leads to

ey =0 (41)
in the axial direction so that the membrane strain ey, during buckling is a constant, and to the buckling
differential equilibrium equation

ﬁg S Rzemb ~11

e (42)

in the radial direction.

4.2. Buckling of pin-ended shallow arches

For anti-symmetric bifurcation buckling, the dimensionless buckling displacement #, is anti-symmetric
while the dimensionless pre-buckling displacement ¢ is symmetric, so that the terms ¢, and o't are anti-
symmetric and their integrals within the interval [—@, @] vanish. In addition, the boundary conditions
require that w, = 0 at 6 = £0, so that the average strain ¢, during buckling is obtained as

—1/9 T ST R (43)
fmb*ZQ _@Emb *2@ o b R b -

Substituting e, = 0 into Eq. (42) leads to the linear homogeneous differential equation for anti-symmetric
buckling of shallow arches given by

~iv

U

The solution of Eq. (44) that satisfies the boundary conditions o, =0 at § = £0 is
. Osin(uO

o, = C| sin(ub) — % (45)

where C is an amplitude parameter.
For pin-ended arches, using the boundary conditions ¢, = 0 at 0 = +£0, Eq. (45) leads to

sin(u®) =0 (46)
whose fundamental solution is

uo =n (47)

so that from Eq. (23) the corresponding actual axial compression N in a pin-ended arch is

2 2
v= bk _mEL (48)
(RO) (5/2)

Substituting Eq. (47) into the non-linear equilibrium condition (29) leads to
) , ) _ 127
(27 +15)7" + (4n” +12)7 +—5= =0 (49)

S

and solving the quadratic equation (49) for g leads to the anti-symmetric buckling load of a pin-ended
shallow arch given by
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9+ 2n2+62—122n2+15n4 )2
S
21 + 15

Nsb = qsbR = Np (50)

which can be simplified to

4
Ny = quR ~ <O.26 +£0.74,/1-0.63 ”—2> No (51)
/LS

When 4, > v/0.637% ~ 7.83, a real anti-symmetric buckling solution in Eq. (51) exists, so that anti-sym-
metric buckling of the pin-ended arch may occur.

For the symmetric snap-through buckling of a pin-ended arch, the dimensionless buckling displacement
vy 1s symmetric. Substituting Eq. (25) into Eq. (42) leads to the buckling equilibrium equation

W Remp _ cos(ub)

= =——1 1-— 52

2T e { " q[ cos(u@) G2)

The solution of Eq. (52), which satisfies the boundary conditions o, =}, =0 at 0 = 0, is
. Rem 147 2 2 _ cos(uf) — cos(u@)
=——F<¢—[(uf)” — (u® 1+2

o= w{ 3 00" = (nOY] + (14 29) R
q [ (p0) sin(u0)  (n@)cos(ub) sin(uO)
5 - (53)
2| cos(u®) cos?(u®)

The average buckling membrane strain of Eq. (40) over the arch is equal to the constant buckling
membrane strain e, which leads to an equation for the relationship between the dimensionless load g and
angle u® during symmetric snap-through buckling given by

A3¢° +B3g+C3 =0 (54)
where

A3 =24, + D; (55)

B; =44, (56)
and

C;=B—-C (57)

and A4, B; and C) are given by Egs. (30)-(32) and D;s is given by
D — 7 tan?(u@) 15 15tan(u®) tan(u@) tan’(uoO)
PTU8(ue)y 8@y 8(uey 40 4.0

(58)

For a given value of p, a solution of the symmetric snap-through buckling load Ny = ¢giR and the cor-
responding value of A can be obtained by solving Egs. (29) and (54) simultaneously. However, the value of
/s rather than the value of u is usually known for a shallow arch. In this case, an iterative process needs to
be used to obtain a solution of Ny = gsR by solving Egs. (29) and (54) simultaneously.

The value of the modified slenderness A, that defines a switch between the buckling modes can be found
when N = Ny, at u® = n, which leads to A; ~ 9.38. When /, > 9.38, a pin-ended arch may buckle in an
anti-symmetric mode, but when 7.83 < A; <9.38, both symmetric and anti-symmetric buckling may occur.
It will be shown next that symmetric buckling occurs first and that anti-symmetric buckling occurs on the
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descending branch of load-displacement curve. When the modified slenderness A, < 7.83, the pin-ended
arch may buckle only in a symmetric mode.

Because the iterative solution process for the symmetric buckling load of an arch is complicated, an
approximation for the symmetric buckling load of a pin-ended arch whose modified slenderness A, < 9.38 is
proposed as

Ny = gsR ~ (0.15 4 0.00672)Np (59)

The lowest value of the symmetric buckling load Ny = gR for a pin-ended arch can be obtained from Eq.
(29) as (P1 and Bradford, 2000)
R—N

. g q
u@h—IE/Zq o ;1811—12/2 N 0 (60)

which leads to

WEL,  mElL

NSS - qSSR - y@lT;/ZN - ;t@hlr;ﬁ R? o S? (61)
From Eq. (25), the dimensionless central radial displacement o, of a pin-ended arch (0 = 0) is
_ 1 2
g _ 1 _wO) (62)
12 | cos(u®) 2

Hence, the corresponding dimensionless central radial displacement o, at Ny, = n*EI,/S* can be obtained
from Eq. (62) as (Pi and Bradford, 2000)

.. 45 70

The value of the central radial displacement v, is real when 1 — (n°/6422) > 0, that is when 4, > /8
(~3.88). When /, < 3.88, buckling of a pin-ended arch does not occur.

The solution (51) for the anti-symmetric buckling and the approximation (59) for the symmetric
buckling of a pin-ended arch are compared with finite element predictions in Figs. 3 and 4. The solution for

1 S— .
o +
& o
~ 0.8 o
5
3
2 0.6}
Q s
'g' : —— Solution (51)
‘% i - - - Solution from (29) and (54)
8 0.4f f i - - - Approximation (59)
g SR Limit between anti—symmetric and
A i H symmetric buckling
0.2l x  Finite element results for 0.5S / rx=25
o Finite element results for 0.5S / rx=50
+ Finite element results for 0.5S / rx=75
0 o Finite element results for 0.5S / rx=100

0 10 20 30 40 50 60 70 80
Modified slenderness A

Fig. 3. Buckling load of pin-ended arches against slenderness.
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é R

%, Tl

9

I

g 0.6+ g - ,

- I3

8§ ! tp 4

w 1

5 04 1+ ﬁ Ny Solution (51)

E ?4_, oIS - Solution (13)

A -0 P g - - - . Approximation (59)

02+ = Finite element resuits for 0.5S /rx =25
o  Finite element results for 0.5S /rx =50
+  Finite element results for 0.5S /rx =75
0 o IFinite element results Ifor 0.5§ /=1 pO

0 20 40 60 80 100 120 140 160 180
Included angle 20 (dgrees)

Fig. 4. Buckling load of pin-ended arches against included angle.

symmetric buckling obtained by simultaneously solving Egs. (29) and (54) is also shown in Fig. 3, while the
classical buckling load (13) for pin-ended arches is also shown in Fig. 4. Fig. 3 shows the variation of the
dimensionless buckling load gR/Np with the modified slenderness 4;, where ¢ is the buckling load and Np is
the classical anti-symmetric buckling load of a pin-ended arch given by Eq. (10). Fig. 4 shows the variation
of the dimensionless buckling load gR/Np with the included angle 26. The finite element package ABAQUS
(1998) and the finite element program developed by Pi and Trahair (1998) were used in the numerical
analysis, and the results of ABAQUS are identical to those of Pi and Trahair. In the finite element analysis,
an I-section, a rectangular hollow section and a rectangular solid section were used. The dimensions of the
I-section are: the overall depth D = 0.2613 m, the flange width B = 0.151 m, the flange thickness # = 0.0123
m, and the web thickness ¢, = 0.0077 m. The dimensions of the rectangular hollow section are: the overall
height D = 0.4 m and the width B = 0.25 m and the wall-thickness # = 0.003 m. The dimensions of the
rectangular solid section are: the height D = 0.005 m and the width B = 0.010 m. The Young’ modulus of
elasticity is assumed to be equal to £ = 200,000 MPa for the three sections.

It can be observed from Figs. 3 and 4 that when the included angle 26 < 90°, the approximation (59) is
almost identical to the solution from Egs. (29) and (54) for the symmetric buckling of pin-ended arches with
the modified slenderness A; < 9.38. Both of these agree extremely well with the finite element predictions.
The solution (51) for anti-symmetric buckling almost coincides with the finite element results for pin-ended
arches with the modified slenderness Z, = 9.38 and the included angle 26 <90°. The classical buckling
loads of either Eqs. (10) or (13) are much higher than the finite element predictions for pin-ended arches
with the included angle 26 < 90°.

When the included angle 20 > 90°, the solution (51) approaches the classical buckling load (10) with the
increase of the modified slenderness and the included angle 26, and tends to be higher than the finite
element predictions. The classical buckling load (13) provides a good lower bound prediction for the anti-
symmetric buckling of pin-ended arches. The included angle 26 = 90° can be used as a criterion for dis-
tinguishing between shallow and non-shallow pin-ended arches based on the in-plane instability under
radial loading.

4.3. Buckling of fixed shallow arches

For anti-symmetric buckling of fixed shallow arches, using the boundary condition o, =, =0 at 0 =
+6 in Eq. (45) produces
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tan(u®) = uO (64)
The lowest solution of Eq. (64) is
u® =~ 1.4303% (65)

so that from Eq. (23) the corresponding actual axial compression N in a fixed arch at anti-symmetric
buckling is
—  (1.43037)’EL
N = (1.43037) EL, n)2 ~ = Nrp (66)
(5/2)

Substituting Egs. (64) and (65) into Eq. (35) leads to

12(1.43037)°
+ Aiz

5¢% +4q =0 (67)

S

and solving Eq. (67) for g leads to the anti-symmetric buckling load of fixed shallow arches given by

3424/1 - 15(1.43037)°/ 72

Nsb - quR - 5

Nes (68)

which can be simplified to

7'52
Ny ~ (0.6 +0.4,/1—30.686 ?>NFB (69)

When 4 > v/30.6867 =~ 17.40, a real anti-symmetric buckling solution (69) exists, so that anti-symmetric
buckling of the fixed arch may occur. The solution (69) can be reduced to that obtained by Schreyer and
Masur (1966) for fixed arches with a rectangular solid section.

For symmetric snap-through buckling of fixed arches, substituting Eq. (34) into Eq. (42) leads to the
buckling equilibrium equation

ﬁgH{;:RZemb{Hq[I_WWH (70)

It e sin(u@)
The solution of Eq. (70), which satisfies the boundary conditions &, = o}, =0 at 6 = O, is

5, [ am { L4000 — (w0)) + (1 . 3_q> [(ONemsp) —eos0))

rrout 2 2 (sin u®)
7 | (u0)(uO)sin(ub) (1) (cos(ub) cos(u®) — 1)
+§ [ sin(u@) " sin’(u@) 1 } (71)

The average buckling membrane strain of Eq. (40) over the arch is equal to the constant buckling mem-
brane strain ey, which leads to an equation for the relationship between the dimensionless load g and angle
1@ during symmetric snap-through buckling given by

AsG? +Bsg+Cy =0 (72)
where
Ay =24, + Dy (73)

By =44, (74)
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and
Cy=B,—Cs (75)
and A4,, B, and C, are given by Eqgs. (36)—(38) and D, is given by
1 (uO)cot(u®) 1 3 2 2 1 3. .3
Dy =~ - - —1
s =5+ 1 + o) L4 (1®)" cot™(u®) + 7 (uB)” cot’(1O) (76)

For a value of u, a solution for the symmetric snap-through buckling load N = ¢giR and the corresponding
value of A can be obtained by solving Egs. (35) and (72) simultancously. However, again the value of A
rather than the value of u is usually known for a shallow arch. In this case, an iterative process needs to be
used to obtain a solution of N = ¢4R by solving Egs. (35) and (72) simultaneously.

The value of the modified slenderness Z; for distinguishing between the buckling modes can be found
when Ni = Ny, at u® = 1.43037. This leads to 4 = 18.60, but when A; > 18.60, the fixed arch may buckle
in an anti-symmetric mode. When 17.40 < A; < 18.60, both symmetric and anti-symmetric buckling may
occur. It will be shown next that symmetric buckling occurs first and that anti-symmetric buckling occurs
on the descending branch of the load—displacement curve. When the modified slenderness A, < 17.40, the
fixed arch may buckle only in a symmetric mode.

Alternatively, the symmetric buckling of pin-ended and fixed arches can be obtained by finding the
maximum value of ¢ by differentiating Egs. (29) or (35) for pin-ended arches or fixed arches respectively as

dg
d(uo)

However, implementing this process becomes very complicated and is not pursued further herein.
Because the solution processes for a symmetric buckling mode are complicated, an approximation for
the symmetric buckling load of fixed arches with the modified slenderness 4, < 18.60 is proposed as

Ny = gR ~ (0.36 + 0.001127)Np (78)

=0 (77)

The lowest value of the symmetric buckling load Ny = ¢R for a fixed arch can be obtained from Eq. (35) as
(Pi and Bradford, 2000)

. . gR—N
lim g = lim Ll .
no—x no—x N

0 (79)

which leads to
[PEL.  T°El

Nss = qSSR = ﬂl{})ll]nN = #1(})111” R = W (80)
From Eq. (34), the dimensionless central radial displacement o, of the fixed arch (6 = 0) is
g [ (u0)[1 —cos(u®)] (10)’
b, == . - (81)
w2 sin(u®) 2

Thus, the corresponding dimensionless central radial displacement &, at Ny, = 72EI/(S/2)* can be obtained
from Eq. (81) as (Pi and Bradford, 2000)

L S? i

S

The value of the central radial displacement v, is real when 1 — (n*/12) > 0, that is when / > 7%(~9.87).
When the modified slenderness A; < 9.87, buckling of a fixed shallow arch does not occur.
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Fig. 5. Buckling load of fixed arches against slenderness.

The solutions (69) for the anti-symmetric buckling and the approximation (78) for the symmetric
buckling of fixed arches are compared with finite element results in Figs. 5 and 6. The solutions for
symmetric buckling obtained by simultaneously solving Eqgs. (35) and (72) are also shown in Fig. 5, while
the classical buckling load (12) for fixed arches is also shown in Fig. 6. In the finite element analysis, the
cross-sections and material properties are the same as those used for the pin-ended arches.

It can be observed that the approximation (78) is almost identical to the solution obtained from Egs. (35)
and (72) for the symmetric buckling of fixed arches with the modified slenderness A; < 18.60. Both of these
agree with the finite element results very well. The solution (69) for anti-symmetric buckling almost co-
incides with the finite element results for fixed arches with the included angle 20 < 90°. The classical
buckling loads of both Egs. (12) and (14) are much higher than the finite element predictions for fixed
arches with the included angle 20 < 90°.

The classical buckling load (11) provides a good prediction for the anti-symmetric buckling of fixed
arches with 2@ > 90°. The included angle 2@ = 90° can be used as a criterion for distinguishing between

1
g
< o8}
Ea
B
<2
g 0.6
=
g
17}
5 04t —— Solution (69) 1
= I - Solution (11)
=] - - - Approximation (78)
02k = Finite element results for 0.5S /rx =25 |
o  Finite element results for 0.5S / rx =50
+  Finite element results for 0.5S /rx =75
0 ) @ finite element results for 0.58 /rx =1 p(]

0 20 40 60 80 100 120 140 160 180
Included angle 20 (degrees)

Fig. 6. Buckling load of fixed arches against included angle.
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shallow and non-shallow arches. The solution (69) approaches the second mode classical buckling load (12)
of the corresponding fixed column with the increase of the modified slenderness A, and included angle 20,
and tends to be slightly lower than the finite element results. Hence, the solution (69) can be used to predict
the buckling load accurately for fixed shallow arches and approximately for fixed non-shallow arches when
the modified slenderness 4, > 18.60.

4.4. Structural behaviour of arches

Typical variations of the dimensionless central vertical displacement v./f with the dimensionless axial
load gR/Np for pin-ended shallow arches are shown in Fig. 7, with Fig. 8 showing the counterparts for fixed
shallow arches, where f'is the arch rise. Four types of buckling and post-buckling behaviour can be ob-
served in these figures. For the first type, there is no buckling as shown in Figs. 7(a) and 8(a). Pin-ended
arches with a modified slenderness 4; < 3.88 and fixed arches with /; <9.87 belong to this type. For the
second type, the arches buckle in a symmetric mode without bifurcation as shown in Figs. 7(b) and 8(b).
Pin-ended arches with a modified slenderness 3.88 < A, < 7.83 and fixed arches with 9.87 < A, <17.40 are in
this category. For the third type, the arches buckle in the symmetric snap-through mode first and then
bifurcate anti-symmetrically on the descending branch of the load—deflection curve under deflection control
as shown in Figs. 7(c) and 8(c). Pin-ended arches with a modified slenderness 7.83 < 4, <9.38 and fixed
arches with 17.40 < 4, < 18.60 display this behaviour. For the fourth type, the arches undergo anti-sym-
metric bifurcation buckling, and the load carrying capacity of the arches decrease rapidly after this as
shown in Figs. 7(d) and 8(d). Pin-ended shallow arches with a modified slenderness /; > 9.38 and fixed
shallow arches with A; > 18.60 belong to this type. It can be seen from Figs. 7 and 8 that the deflections are
substantial when buckling occurs so that classical buckling theory, which does not consider the effects of
pre-buckling deformations on buckling, cannot be used to predict the buckling load of shallow arches and
moreover is unconservative.

(a) (b)
0.5 0.5
o 04 As=2.61 e 0.4 As=4.79
Z Z
> 03 ~ 03
< 0.2 <02
0.1 0.1
0Y 0
0 1 2 3 0 05 1 1.5 2
vel/f ve/f
1 1
(c) (d)
5 05 As=8.27 5 05 As=17.41
s 0 Qé 0
oanti-symmetric buckling \l
-05 -05
0 05 1 1.5 2 0 05 1 1.5 2
ve/f ve/f

Fig. 7. Buckling and post-buckling behaviour of pin-ended arches.
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Fig. 8. Buckling and post-buckling behaviour of fixed arches.
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Fig. 9. Buckling and post-buckling behaviour of non-shallow arches.
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The buckling and post-buckling behaviour of non-shallow arches is illustrated in Fig. 9. The buckling
mode is characterised by anti-symmetric bifurcation, but the post-buckling loads of pin-ended arches in-
crease slightly while the post-buckling loads of fixed arches decrease slightly. The deflections are very small
when buckling occurs. This indicates that the effects of pre-buckling deformations on the buckling of non-
shallow arches can be ignored and classical buckling theory can be used to predict their buckling load.

5. Concluding remarks

This paper has studied the in-plane stability of both pin-ended and fixed uniform circular arches with an
arbitrary cross-section subjected to a radial load uniformly distributed around the arch axis. It has been
found that classical buckling theory overestimates both the symmetric snap-through buckling and the anti-
symmetric bifurcation buckling load of shallow arches. Non-linear analysis based on an energy method
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developed in this paper provides accurate solutions for the symmetric and anti-symmetric buckling of both
pin-ended and fixed shallow arches. The solutions include the non-linear effect of the pre-buckling defor-
mations due to the bending action. Approximate solutions have been proposed for the symmetric buckling
load of pin-ended and fixed shallow arches. Comparisons with finite element predictions have shown that
the closed form solutions (51) and (69) for the anti-symmetric buckling load of pin-ended and fixed shallow
arches and the approximations (59) and (78) for the symmetric buckling load of pin-ended and fixed
shallow arches are accurate.

The criteria for the classification of different types of fundamental buckling behaviour have been es-
tablished. The included angle 20 = 90° can be used as a criterion for distinguishing between shallow and
non-shallow arches. For pin-ended arches with the included angle 2@ < 90°, the solution (51) can be used to
predict the anti-symmetric bifurcation buckling load of shallow arches whose modified slenderness
Js = 9.38, while the approximation (59) can be used to predict the symmetric buckling load of arches with
3.88 < 4 < 9.38. For fixed arches with the included angle 260 < 90°, the solution (69) can be used to predict
the anti-symmetric bifurcation buckling load when the modified slenderness Ay > 18.60 while the approxi-
mation (78) can be used to predict the symmetric buckling load when 9.878 < 4, < 18.60. Buckling does not
occur for pin-ended arches with the modified slenderness A, < 3.88 or for fixed arches with the modified
slenderness 4; < 9.87. When the included angle 20 > 90°, the anti-symmetric bifurcation buckling load for
pin-ended non-shallow arches can be predicted by the classical solution (13), while the anti-symmetric
bifurcation buckling load for fixed non-shallow arches can be predicted by the classical solution (11).
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Appendix A. Limit value of buckling load

The lowest symmetric buckling load can be obtained as follows. From Eq. (29)

—By £ /B? — 44,C,

G = Al
1 24, (A.1)
so that the dimensionless load g of pin-ended arches at u® = n/2 can be obtained as
_ 2 _ _ 2
nO—m1/2 ne—m1/2 2A1(7'[/2 — /_,l,@)
Because
. . 1 tan(u0) 1|/m 2
lim 4, (n/2 — uO)* = 1 55" L tan’(u@) |+~ p( = — uoO
u@lg/z 1/ 1) ,1@123/2 { 4(ﬂ@)2 { ne +tan”(10) Jr6 (2 # )
. 1 T 2 cot(n/2 — u®) /=n 2
= 1 — — —
}L@T;/Z { 4('“@)2 {5( 2 @) ue (2 ,u@)
2 (T o) (el
+ cot (2 wo) (2 no) } *s (2 wo) ¢ = z (A3)

and
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. . 1 tan(,u@)} 1| /=
lim Bi(n/2 — u®)= lim 1 - + = (—— @)
u0—m/2 l( / K ) ,u@—»n/Z{ (M@)Z |: ,LL@ 3 2 H

=t { L [(5-0) L0 (2 )] L (50|

8
the dimensionless load g of pin-ended shallow arches at u® = /2 is equal to zero
H@h_r}ri/zq =0 (A.S)
Because
_ _ > _ p
im 9 g CEEVEAC)m2mp8) 4 (A.6)
uO—m/2 (7'6/2 - ﬂ@) uO—m/2 2A1<n/2 — 'u@) T 64}‘5

the corresponding dimensionless central vertical displacement 7. of a pin-ended arch at uS/2 = n/2 can

then be obtained from Eq. (62) as
(r/2-pu0) (= (u0)*
_(Z_ 1 M2
sin(/2 — 10) (3-r0)(1+75

452 70

S

. ~ . q
Iim o= lim —
pO—1/2 po-7/2 12 (/2 — u®)

The value of o, is real when 1 — (77:6/6425) >0, so that A > n’/8 = 3.88. When /; < 3.88, there is no
buckling for pin-ended arches.
The lowest symmetric buckling load can be obtained as follows. From Eq. (35)

—B, + /B — 44,C,

q = 2142 (A'S)
the dimensionless load g of fixed arches at u® = n can be obtained from Eq. (81) as
_ 2 _ _ 2
lim g = lim {22 VB~ 44:Co)(m — 4u6) (A9)
uO—n uO—mn 2A2(T[ — 'u@)
Because
. 2 . 5 1 2 2
Jlim Ay(n — p6)” = lim { o 110 3(1O) cot(u®) + (uO) cot’(uO) — 4] } (m — no)
= lim i(n— @)2+L[— 3(u@) cot(n — uO)(n — ud)*
= lim ¢ 5 u 4(M@)2 u u u
+ (10)* cot’ (n — ) (n — u@)* — 4(n — u@)z]}
_! (A.10)
=37 .

and
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. . 1 1
,}éranz(n — o) = lim 03+ (10) [(n@) cot(u@) — 1] ¢ (n — 1O)
lim {5 (x— 40) + [~ (4O) cot( — 4O)( — 4O) ~ (x — u6)]
= —(n— — - w— T — —(n—
Jim Q3 I (76) I I I I
1
- A.ll
- (A1)
the dimensionless load g of a fixed arch at u® = n is equal to zero
lim g=0 (A.12)
no—mn
Because
— 2 _ _
im — 9 _ i SR EVE 4A2C2)2(n 46) _ (A.13)
HO—n T — /,l@ ne—mn 2A2(TE — ,U@)
the dimensionless central vertical displacement 7, at u® = r is obtained as
L .1 g UOI[1 + cos(n — u®)|(w — ud) (uO)*
1 .= lim — . —(n— uS/2)~——
w0 T 6 W (n—pud) sin(n — 1@®) (= 1S/2) 2
S? 7
=g 1+,/1- =z (A.14)

S

The value of o, is real when 1 — (n“/ﬂvf) = 0, so that J, > n?> = 9.87. When /, < 9.87, there is no buckling
for fixed shallow arches.
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